Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Chest ; 159(2): 724-732, 2021 02.
Article in English | MEDLINE | ID: covidwho-1049756

ABSTRACT

BACKGROUND: Millions of smartphones contain a photoplethysmography (PPG) biosensor (Maxim Integrated) that accurately measures pulse oximetry. No clinical use of these embedded sensors is currently being made, despite the relevance of remote clinical pulse oximetry to the management of chronic cardiopulmonary disease, and the triage, initial management, and remote monitoring of people affected by respiratory viral pandemics, such as severe acute respiratory syndrome coronavirus 2 or influenza. To be used for clinical pulse oximetry the embedded PPG system must be paired with an application (app) and meet US Food and Drug Administration (FDA) and International Organization for Standardization (ISO) requirements. RESEARCH QUESTION: Does this smartphone sensor with app meet FDA/ISO requirements? Are measurements obtained using this system comparable to those of hospital reference devices, across a wide range of people? STUDY DESIGN AND METHODS: We performed laboratory testing addressing ISO and FDA requirements in 10 participants using the smartphone sensor with app. Subsequently, we performed an open-label clinical study on 320 participants with widely varying characteristics, to compare the accuracy and precision of readings obtained by patients with those of hospital reference devices, using rigorous statistical methodology. RESULTS: "Breathe down" testing in the laboratory showed that the total root-mean-square deviation of oxygen saturation (Spo2) measurement was 2.2%, meeting FDA/ISO standards. Clinical comparison of the smartphone sensor with app vs hospital reference devices determined that Spo2 and heart rate accuracy were 0.48% points (95% CI, 0.38-0.58; P < .001) and 0.73 bpm (95% CI, 0.33-1.14; P < .001), respectively; Spo2 and heart rate precision were 1.25 vs reference 0.95% points (P < .001) and 5.99 vs reference 3.80 bpm (P < .001), respectively. These small differences were similar to the variation found between two FDA-approved reference instruments for Spo2: accuracy, 0.52% points (95% CI, 0.41-0.64; P < .001) and precision, 1.01 vs 0.86% points (P < .001). INTERPRETATION: Our findings support the application for full FDA/ISO approval of the smartphone sensor with app tested for use in clinical pulse oximetry. Given the immense and immediate practical medical importance of remote intermittent clinical pulse oximetry to both chronic disease management and the global ability to respond to respiratory viral pandemics, the smartphone sensor with app should be prioritized and fast-tracked for FDA/ISO approval to allow clinical use. TRIAL REGISTRY: ClinicalTrials.gov; No.: NCT04233827; URL: www.clinicaltrials.gov.


Subject(s)
Mobile Applications , Oximetry/instrumentation , Photoplethysmography/instrumentation , Smartphone , Adolescent , Adult , Aged , Aged, 80 and over , Biosensing Techniques , Device Approval , Female , Humans , Male , Middle Aged , Oximetry/standards , Photoplethysmography/standards , United States , United States Food and Drug Administration , Young Adult
2.
Sensors (Basel) ; 20(17)2020 Aug 28.
Article in English | MEDLINE | ID: covidwho-740500

ABSTRACT

The non-invasive estimation of blood oxygen saturation (SpO2) by pulse oximetry is of vital importance clinically, from the detection of sleep apnea to the recent ambulatory monitoring of hypoxemia in the delayed post-infective phase of COVID-19. In this proof of concept study, we set out to establish the feasibility of SpO2 measurement from the ear canal as a convenient site for long term monitoring, and perform a comprehensive comparison with the right index finger-the conventional clinical measurement site. During resting blood oxygen saturation estimation, we found a root mean square difference of 1.47% between the two measurement sites, with a mean difference of 0.23% higher SpO2 in the right ear canal. Using breath holds, we observe the known phenomena of time delay between central circulation and peripheral circulation with a mean delay between the ear and finger of 12.4 s across all subjects. Furthermore, we document the lower photoplethysmogram amplitude from the ear canal and suggest ways to mitigate this issue. In conjunction with the well-known robustness to temperature induced vasoconstriction, this makes conclusive evidence for in-ear SpO2 monitoring being both convenient and superior to conventional finger measurement for continuous non-intrusive monitoring in both clinical and everyday-life settings.


Subject(s)
Ear Canal , Hypoxia/diagnosis , Monitoring, Physiologic/instrumentation , Oximetry/instrumentation , Photoplethysmography/instrumentation , Wearable Electronic Devices , Adult , Betacoronavirus/physiology , COVID-19 , Coronavirus Infections/blood , Coronavirus Infections/diagnosis , Coronavirus Infections/therapy , Equivalence Trials as Topic , Feasibility Studies , Female , Fingers , Humans , Hypoxia/blood , Male , Monitoring, Physiologic/methods , Oximetry/methods , Oxygen/analysis , Oxygen/blood , Pandemics , Photoplethysmography/methods , Pneumonia, Viral/blood , Pneumonia, Viral/diagnosis , Pneumonia, Viral/therapy , SARS-CoV-2 , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL